(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(s(x), s(y)) → minus(x, y)
quot(0, s(y)) → 0
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(n, x), y) → add(n, app(x, y))
reverse(nil) → nil
reverse(add(n, x)) → app(reverse(x), add(n, nil))
shuffle(nil) → nil
shuffle(add(n, x)) → add(n, shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
S is empty.
Rewrite Strategy: FULL
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
add/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(x), y) → add(app(x, y))
reverse(nil) → nil
reverse(add(x)) → app(reverse(x), add(nil))
shuffle(nil) → nil
shuffle(add(x)) → add(shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
minus(x, 0') → x
minus(s(x), s(y)) → minus(x, y)
quot(0', s(y)) → 0'
quot(s(x), s(y)) → s(quot(minus(x, y), s(y)))
app(nil, y) → y
app(add(x), y) → add(app(x, y))
reverse(nil) → nil
reverse(add(x)) → app(reverse(x), add(nil))
shuffle(nil) → nil
shuffle(add(x)) → add(shuffle(reverse(x)))
concat(leaf, y) → y
concat(cons(u, v), y) → cons(u, concat(v, y))
less_leaves(x, leaf) → false
less_leaves(leaf, cons(w, z)) → true
less_leaves(cons(u, v), cons(w, z)) → less_leaves(concat(u, v), concat(w, z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
quot,
app,
reverse,
shuffle,
concat,
less_leavesThey will be analysed ascendingly in the following order:
minus < quot
app < reverse
reverse < shuffle
concat < less_leaves
(8) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
The following defined symbols remain to be analysed:
minus, quot, app, reverse, shuffle, concat, less_leaves
They will be analysed ascendingly in the following order:
minus < quot
app < reverse
reverse < shuffle
concat < less_leaves
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
minus(
gen_0':s5_0(
n9_0),
gen_0':s5_0(
n9_0)) →
gen_0':s5_0(
0), rt ∈ Ω(1 + n9
0)
Induction Base:
minus(gen_0':s5_0(0), gen_0':s5_0(0)) →RΩ(1)
gen_0':s5_0(0)
Induction Step:
minus(gen_0':s5_0(+(n9_0, 1)), gen_0':s5_0(+(n9_0, 1))) →RΩ(1)
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) →IH
gen_0':s5_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
The following defined symbols remain to be analysed:
quot, app, reverse, shuffle, concat, less_leaves
They will be analysed ascendingly in the following order:
app < reverse
reverse < shuffle
concat < less_leaves
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quot.
(13) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
The following defined symbols remain to be analysed:
app, reverse, shuffle, concat, less_leaves
They will be analysed ascendingly in the following order:
app < reverse
reverse < shuffle
concat < less_leaves
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
app(
gen_nil:add6_0(
n603_0),
gen_nil:add6_0(
b)) →
gen_nil:add6_0(
+(
n603_0,
b)), rt ∈ Ω(1 + n603
0)
Induction Base:
app(gen_nil:add6_0(0), gen_nil:add6_0(b)) →RΩ(1)
gen_nil:add6_0(b)
Induction Step:
app(gen_nil:add6_0(+(n603_0, 1)), gen_nil:add6_0(b)) →RΩ(1)
add(app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b))) →IH
add(gen_nil:add6_0(+(b, c604_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
The following defined symbols remain to be analysed:
reverse, shuffle, concat, less_leaves
They will be analysed ascendingly in the following order:
reverse < shuffle
concat < less_leaves
(17) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
reverse(
gen_nil:add6_0(
n1522_0)) →
gen_nil:add6_0(
n1522_0), rt ∈ Ω(1 + n1522
0 + n1522
02)
Induction Base:
reverse(gen_nil:add6_0(0)) →RΩ(1)
nil
Induction Step:
reverse(gen_nil:add6_0(+(n1522_0, 1))) →RΩ(1)
app(reverse(gen_nil:add6_0(n1522_0)), add(nil)) →IH
app(gen_nil:add6_0(c1523_0), add(nil)) →LΩ(1 + n15220)
gen_nil:add6_0(+(n1522_0, +(0, 1)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(18) Complex Obligation (BEST)
(19) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
The following defined symbols remain to be analysed:
shuffle, concat, less_leaves
They will be analysed ascendingly in the following order:
concat < less_leaves
(20) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
shuffle(
gen_nil:add6_0(
n1804_0)) →
gen_nil:add6_0(
n1804_0), rt ∈ Ω(1 + n1804
0 + n1804
02 + n1804
03)
Induction Base:
shuffle(gen_nil:add6_0(0)) →RΩ(1)
nil
Induction Step:
shuffle(gen_nil:add6_0(+(n1804_0, 1))) →RΩ(1)
add(shuffle(reverse(gen_nil:add6_0(n1804_0)))) →LΩ(1 + n18040 + n180402)
add(shuffle(gen_nil:add6_0(n1804_0))) →IH
add(gen_nil:add6_0(c1805_0))
We have rt ∈ Ω(n3) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n3).
(21) Complex Obligation (BEST)
(22) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
The following defined symbols remain to be analysed:
concat, less_leaves
They will be analysed ascendingly in the following order:
concat < less_leaves
(23) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
concat(
gen_leaf:cons7_0(
n2005_0),
gen_leaf:cons7_0(
b)) →
gen_leaf:cons7_0(
+(
n2005_0,
b)), rt ∈ Ω(1 + n2005
0)
Induction Base:
concat(gen_leaf:cons7_0(0), gen_leaf:cons7_0(b)) →RΩ(1)
gen_leaf:cons7_0(b)
Induction Step:
concat(gen_leaf:cons7_0(+(n2005_0, 1)), gen_leaf:cons7_0(b)) →RΩ(1)
cons(leaf, concat(gen_leaf:cons7_0(n2005_0), gen_leaf:cons7_0(b))) →IH
cons(leaf, gen_leaf:cons7_0(+(b, c2006_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(24) Complex Obligation (BEST)
(25) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
concat(gen_leaf:cons7_0(n2005_0), gen_leaf:cons7_0(b)) → gen_leaf:cons7_0(+(n2005_0, b)), rt ∈ Ω(1 + n20050)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
The following defined symbols remain to be analysed:
less_leaves
(26) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
less_leaves(
gen_leaf:cons7_0(
n3096_0),
gen_leaf:cons7_0(
n3096_0)) →
false, rt ∈ Ω(1 + n3096
0)
Induction Base:
less_leaves(gen_leaf:cons7_0(0), gen_leaf:cons7_0(0)) →RΩ(1)
false
Induction Step:
less_leaves(gen_leaf:cons7_0(+(n3096_0, 1)), gen_leaf:cons7_0(+(n3096_0, 1))) →RΩ(1)
less_leaves(concat(leaf, gen_leaf:cons7_0(n3096_0)), concat(leaf, gen_leaf:cons7_0(n3096_0))) →LΩ(1)
less_leaves(gen_leaf:cons7_0(+(0, n3096_0)), concat(leaf, gen_leaf:cons7_0(n3096_0))) →LΩ(1)
less_leaves(gen_leaf:cons7_0(n3096_0), gen_leaf:cons7_0(+(0, n3096_0))) →IH
false
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(27) Complex Obligation (BEST)
(28) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
concat(gen_leaf:cons7_0(n2005_0), gen_leaf:cons7_0(b)) → gen_leaf:cons7_0(+(n2005_0, b)), rt ∈ Ω(1 + n20050)
less_leaves(gen_leaf:cons7_0(n3096_0), gen_leaf:cons7_0(n3096_0)) → false, rt ∈ Ω(1 + n30960)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
No more defined symbols left to analyse.
(29) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
(30) BOUNDS(n^3, INF)
(31) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
concat(gen_leaf:cons7_0(n2005_0), gen_leaf:cons7_0(b)) → gen_leaf:cons7_0(+(n2005_0, b)), rt ∈ Ω(1 + n20050)
less_leaves(gen_leaf:cons7_0(n3096_0), gen_leaf:cons7_0(n3096_0)) → false, rt ∈ Ω(1 + n30960)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
No more defined symbols left to analyse.
(32) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
(33) BOUNDS(n^3, INF)
(34) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
concat(gen_leaf:cons7_0(n2005_0), gen_leaf:cons7_0(b)) → gen_leaf:cons7_0(+(n2005_0, b)), rt ∈ Ω(1 + n20050)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
No more defined symbols left to analyse.
(35) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
(36) BOUNDS(n^3, INF)
(37) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
No more defined symbols left to analyse.
(38) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n3) was proven with the following lemma:
shuffle(gen_nil:add6_0(n1804_0)) → gen_nil:add6_0(n1804_0), rt ∈ Ω(1 + n18040 + n180402 + n180403)
(39) BOUNDS(n^3, INF)
(40) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
No more defined symbols left to analyse.
(41) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
reverse(gen_nil:add6_0(n1522_0)) → gen_nil:add6_0(n1522_0), rt ∈ Ω(1 + n15220 + n152202)
(42) BOUNDS(n^2, INF)
(43) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
app(gen_nil:add6_0(n603_0), gen_nil:add6_0(b)) → gen_nil:add6_0(+(n603_0, b)), rt ∈ Ω(1 + n6030)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
No more defined symbols left to analyse.
(44) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
(45) BOUNDS(n^1, INF)
(46) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
s(
x),
s(
y)) →
minus(
x,
y)
quot(
0',
s(
y)) →
0'quot(
s(
x),
s(
y)) →
s(
quot(
minus(
x,
y),
s(
y)))
app(
nil,
y) →
yapp(
add(
x),
y) →
add(
app(
x,
y))
reverse(
nil) →
nilreverse(
add(
x)) →
app(
reverse(
x),
add(
nil))
shuffle(
nil) →
nilshuffle(
add(
x)) →
add(
shuffle(
reverse(
x)))
concat(
leaf,
y) →
yconcat(
cons(
u,
v),
y) →
cons(
u,
concat(
v,
y))
less_leaves(
x,
leaf) →
falseless_leaves(
leaf,
cons(
w,
z)) →
trueless_leaves(
cons(
u,
v),
cons(
w,
z)) →
less_leaves(
concat(
u,
v),
concat(
w,
z))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
quot :: 0':s → 0':s → 0':s
app :: nil:add → nil:add → nil:add
nil :: nil:add
add :: nil:add → nil:add
reverse :: nil:add → nil:add
shuffle :: nil:add → nil:add
concat :: leaf:cons → leaf:cons → leaf:cons
leaf :: leaf:cons
cons :: leaf:cons → leaf:cons → leaf:cons
less_leaves :: leaf:cons → leaf:cons → false:true
false :: false:true
true :: false:true
hole_0':s1_0 :: 0':s
hole_nil:add2_0 :: nil:add
hole_leaf:cons3_0 :: leaf:cons
hole_false:true4_0 :: false:true
gen_0':s5_0 :: Nat → 0':s
gen_nil:add6_0 :: Nat → nil:add
gen_leaf:cons7_0 :: Nat → leaf:cons
Lemmas:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
Generator Equations:
gen_0':s5_0(0) ⇔ 0'
gen_0':s5_0(+(x, 1)) ⇔ s(gen_0':s5_0(x))
gen_nil:add6_0(0) ⇔ nil
gen_nil:add6_0(+(x, 1)) ⇔ add(gen_nil:add6_0(x))
gen_leaf:cons7_0(0) ⇔ leaf
gen_leaf:cons7_0(+(x, 1)) ⇔ cons(leaf, gen_leaf:cons7_0(x))
No more defined symbols left to analyse.
(47) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
minus(gen_0':s5_0(n9_0), gen_0':s5_0(n9_0)) → gen_0':s5_0(0), rt ∈ Ω(1 + n90)
(48) BOUNDS(n^1, INF)